Modeling Metabolism

What if we don’t have a
complete kinetic description?
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Complete kinetics?

Approach to studying
behavior of defined
genotypes ...

Subject them to governing
constraints

and

then analyze biological properties
within the applicable constraints

jsedwards@salud.unm.edu




Metabolic Constraints

m Physicochemical factors
— Mass, energy, and redox balance
e Systemic stoichiometry

— osmotic pressure, electroneutrality, solvent
capacity, molecular diffusion, thermodynamics

— Non-adjustable constraints
m System specific factors
— Capacity:
e Maximum fluxes
— Rates:
e Enzyme Kinetics
— Gene Regulation
— Adjustable constraints
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What are the metabolic capabilities

= Important question.

m Genome sequencing projects were
hoped to answer this question.

— Becoming clear that cellular functions
are multigenic in nature.

— Capabilities can not be assessed by
cataloging of genes.

— Systems science must be applied to
study the systemic behavior of the
entire genotype.

— Flux-balance analysis (FBA) is a
method well-suited to answer many
questions.
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Metabolism

= Metabolism is the “chemical
engine” that drives cellular
activities.

— Acts to convert raw materials (ie,
glucose) into energy and the building
blocks used to produce biological
structures

— Dynamic process

— Obeys the laws of physics and
chemistry

— limited by the physico-chemical
constraints
— regulatory mechanisms
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Description of metabolism

= Metabolic reactions (catalyzed by
enzymes) are characterized by
stoichiometry and the rate of
conversion.
— Stoichiometry is the most reliable

Information regarding metabolism.
e Seguence of reactions

= We will discuss the mathematical
description of metabolic
stoichiometry
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Dynamic Description

= Dynamic mass balances on each
metabolite

— Sum of rates of formation,
degradation, utilization, and transport

\Y/

v trans
V V
syn > . deg >

* V. ans: Uptake or secretion of metabolite
across the cell membrane

* Vn» Synthesis of the metabolite

* V e, cOnsumption of cellular constituents or
maintenance requirements

Vyeq: degradation of metabolite
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Dynamic Description

% = -V
dt syn deg
m Typically, the uptake and secretion rates are known.
» The growth and maintenance requirements are known.
X v v, b

dt syn deg

+V V

trans Y use

= More formally, one can write
dX; _

dt
= Where v; is the jth reaction rate, S; is the moles of

metabolite i produced in reaction j
m  This is typically written in matrix form

ijVj _bi

dX _

—=S-v-b
dt
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Dynamic Description

dX _
dt
m This Is an important equation.

— Gives the rate of change of the
metabolite concentrations as a linear
combination of the reaction rates.

— The reaction rates are non-linear
functions of the metabolite
concentrations and a set of unknown

parameters. _ ,,_
v, = f(cp)

— Thus, we have a very difficult equation to
solve!
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Flux-Balance Analysis

dX _

—=S-v-Db
dt

m Make simplifications based on the
properties of the system.

— Time constants for metabolic reactions are
very fast (sec - min) compared to cell growth
and culture fermentations (hrs)

— There is not a net accumulation of metabolites
In the cell over time.
= One may thus consider the steady-state
approximation to answer many questions
regarding metabolism.
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Flux-Balance Analysis

Removes the metabolite concentrations as a
variable in the equation.

Time is also not present in the equation.

m We are left with a simple matrix equation that
contains:

— Stoichiometry: known

— Uptake rates, secretion rates, and
requirements: known

— Metabolic fluxes: Can be solved for!

m We will discuss the steady-state behavior now,
and leave the dynamic description for later.
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Stoichiometric Matrix

m The matrix, S, Is very important in
metabolic dynamics.

= It maps the reaction rates into the
rates of change of metabolites.

E mxn matrix. The number of
columns n (reactions) often
exceeds the number of rows m

(metabolites)
— Will address this later
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FBA

® There are 3 different situations
that can occur In the
stoichiometric matrix.

—Under-determined system (n>m)
—Determined system (n=m)
—Over-determined system (n<m)
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Determined System

m Most systems are under-determined, but it is
sometimes possible to measure some fluxes and reduce
the matrix into a square matrix as follows

a bat]ronn

\Y

© |
S:[SCSE] Ve _Sc (b_SeVe)
® S, must be non-singular
— Minimize the condition number of S,
Fluxes in v, must be measurable

m  The experimentally determined fluxes are subject to experimental
errors. Therefore, the condition number of S, in important. The
condition number is a measure of the possible error propagation in
computing the flux distributions
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You derive a system of linear equations using steady state mass
balances for a metabolic network. You determine that you need to
make a few measurements so that you can calculate all the fluxes
In the system. With some work, you are able to derive the
following system of equations:

S-.v=b

26 2l

You measure b and determine it is:
19.25

b=
P

Using these numbers, you get the following result for the fluxes in
the system:

e

Now, you decide to repeat the experiment and you make the

following measurement for b:
o =|19:24 J

| 6.85
This time you determine the fluxes in the system are:

7.1J
V =
4.1




Over-Determined System

When the system of flux-balance equations is over-determined, a least-
sguares analysisin various formsis used to determine the best steady
state flux distribution. Such regression finds the best fit of the datato
the flux balances, and therefore represents the best reconciliation and
consistency in the data.

[SC‘Se] * |:\/C:| = SCVC + Seve - b
Ve

S'-Syv,=S"(b-S.v,)

v.=(s"-8.) {s." - (b-Sw.)}

Conditions similar to the determined system are required
Example.
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Under-Determined System

All real metabolic systems fall into this category

Systems are moved into the other categories by measurement
of fluxes and additional assumptions.

m Infinite feasible flux distributions, however, they fall into a
solution space defined by the convex polyhedral cone.

m The actual flux distribution is determined by the cells
regulatory mechanisms.

m It absence of kinetic information, we can estimate the
metabolic flux distribution by postulating objective functions
that underlie the cell’s behavior.

= Within this framework, one can address guestions related to
the capabilities of metabolic networks to perform functions
while constrained by stoichiometry, limited thermodynamic
information (reversibility), and physico-chemical constraints
(ie. uptake rates)
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Under-Determined System
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Under-Determined System

Vl
Al [1 -1 0 -1 o]v,| [0
%B:O 1 -1 0 1]|v,|=|0
cl]lo o 0 1 -1v,| [0
| Vs |
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Under-Determined System

If v, = 1 and v; = 1 (measured), what is
the relation between v,, v, and v;?
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Under-Determined System

Vl
Al |1 -1 0 -1 olv,| [0
dgl=lo 1 -1 o0 1|v,|=|0
% e 0 0 0 1 -1v,| |0

-

jsedwards@salud.unm.edu 21




Under-Determined System

:L\v4
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Under-Determined System

If v, IS irreversible
If v, Is irreversible

v,;S1

vy 1 '
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Under-Determined System

V, = Vg v, ! Maximal ATP Production
1
If v, IS irreversible
If v, is irreversible aximal Growth
v,;S1 X
vo<1 g
3 1 V,
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Flux Balance Analysis

CO=C === ()
OO0

CJ
03 L)
=)

o=
O = =
=)

=808 0 88
8 0 0. ¢ ¢ &
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FBA - Linear Program

S-v=Db
= A linear programming problem is formulated
where one finds a solution to the eq. While
minimizing an objective function.
— Minimize (Z2)
— Z = (c.v)
m For growth, define a growth flux:

Y d, - M= s hiomass

allM
m Constraints to the LP problem:s.y=p
v, 20
o; <V, <
v, = X,
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Precursors to cell growth

How to define the growth function.

— The biomass composition has been
determined for several cells, E. coli and B.
subtilis.

e This can be included in a complete metabolic
network

— However, only the catabolic network can be
considered that degrades the carbon source
Into the 12 biosynthetic precursors and
generates the 3 energy and redox cofactors.
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Applicability of FBA

m Stoichiometry is well-known
m Limited thermodynamic information is required
— reversibility vs. irreversibility

m Experimental knowledge can be incorporated in to
the problem formulation

m Linear optimization allows the identification of the
reaction pathways used to fulfil the goals of the
cell if it is operating in an optimal manner.

m The relative value of the metabolites can be
determined

m Flux distribution for the production of a
commercial metabolite can be identified. Genetic
Engineering candidates
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Constraints

* Incomplete constraints

— Physicochemical constraints
— Feasible set is a region of flux
space

« contains flux vectors that
satisfy the constraints

» defines the metabolic
capabilities
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e Complete Knowledge

— System specific constraints

* Enzyme kinetics, gene
regulation

— Initial conditions

— Feasible set @ single point




Defining the constraints

m Mass, energy, and redox balance constraints
— Stoichiometry based
* “hardwired”
» well known

Dynamic mass balances

cellalar, o o Voo Steady State Conditions

I=lnp
v= Internal Flux S - stoichiometric matrix (m x n)
b= Exchange Flux v - flux distribution vector (n x 1)
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Defining the constraints

m ldentify a specific point within the applicable
constraints under any given condition

Linear programming - Determine the optimal
utilization of the metabolic network, subject to
the P/C constraints, to maximize the growth of
the cell

Assumption:

The cell has found the optimal solution by
adjusting the system specific constraints
(enzyme Kinetics and gene regulation)
through evolution and natural selection.

| will find the optimal solution by linear
F|UXB programming
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Map Check

Flux balance analysis:
Quantitative Analysis

of the Metabolic Flux
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Acetate Carbon Source

Experimental reconstruction
of the flux cone
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Acetate-Oxygen PhPP

Oxygen Uptake Rate

B ] ) ] ]
Acetate Uptake Rate
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Acetate-Oxygen PhPP

Oxygen Uptake Rate

B ] ) ] ]
Acetate Uptake Rate
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Acetate-Oxygen PhPP

" PR —

~~—| Growth Rate /
| Increases

Oxygen Uptake Rate

B ] ) ] ]
Acetate Uptake Rate
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Acetate-Oxygen PhPP

m - , ’ /
/ ; / //

| Hypothesis:
| Metabolic regulation will drive the
operation of the metabolic network
toward the line of optimality

Oxygen Uptake Rate

B ] ) ] ]
Acetate Uptake Rate
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Experimental program

to test the In silico derived
hypothesis
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38



Methods

m Batch E. coli K12 on acetate M9 media at 37°C.

m Titration of the initial acetate concentration to
control the acetate uptake rate (0.3 — 4 g/L)

m Simultaneously measured the parameters to
reconstruct the phenotype phase plane
— Acetate uptake rate
e HPLC
— Oxygen uptake rate
e Mass transfer measurement,Respirometer, Gas
analyzer
— Growth rate
e Turbidity (A600 & A420) and Cell counts
(Coulter Counter)
— By-product production (Only CO2 — Not measured)
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Acetate Data
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Acetate 3-D PhPP

Growth Rate (1/hr)
04 r
03
02
C 1 1e4 94
Bl 0.03
I 0.06
B 0.09
1 0.12
] 0.15 16
[ 0.18
Bl 0.21 )
= gg; Oxygen Uptake Rate
— ai:ove (mmole/g-DW/hr)
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Predictive Capability

in silico analysis
predicted a single
degree of
freedom @
Experimentally
confirmed

Oxygen
e 17 |Error =3.3%
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Succinate

Experimental reconstruction
of the phenotype phase plane
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Succinate PhPP

25
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Map Check

Flux balance analysis:
What if we are wrong?
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Always valid?

m FBA and linear optimization does
not always correctly predict the
behavior of E. coli

m Why???

® How can we test the FBA
framework???
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We are wrong
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But we are also right!!!
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Map Check

Testing our predictions
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Mutant Analysis

Using flux balance analysis
to study the effect of
gene deletions
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Map Check

Testing our predictions:

High throughput analysis
of FBA gene deletion
results
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Gene deletion analysis

Badarinarayana, V., Estep, P.W., 3rd, Shendure, J.,
Edwards, J., Tavazoie, S., Lam, F. and Church,
G.M. (2001) Selection analyses of insertional
mutants using subgenic-resolution arrays.
Nat Biotechnol, 19, 1060-1065.

-

IR

biotechnologyg
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Gene deletion analysis

=" Test the FBA predictions for mutant growth
rate for ALL gene mutants at one time.

2 Random, high-density, tagged insertional
mutagenesis of the E. coli genome.

=2« Negative selection on the library of mutants.

Read-out to determine population-wide
changes in representation... Under a specific
negative selection, disruption of which
genomic sequences results in reduced
growth rates?
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Transposon mutagenesis
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Gene deletion analysis

m  “suicide” vector (R6K vy-ori; pir-strain restricted)

M Encodes variant of the Tnl1l0 transposase with reduced
specificity for hot spots.

m  transposon element carries kan marker & MCS.

r T7 promoter
B2 T7

NAHH [(————>| .
MCS IS10R
| < |
R6K ori amp tnp* (Ptac) laclq

Badarinarayana, et al. (2001) Nat Biotechnol
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Labeling the DNA

Badarinarayana, et al. (2001) Nat Biotechnol

}
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Gene deletion analysis

Table 1. Escherichia coli genes exhibiting largest fold decrease in signal

Gene? Fold Functional subcategory Functional category
decrease®
rfaC 140 Lipopolysaccharide Macromolecule synthesis, modification
speF 125 Polyamine biosynthesis Central intermediary metabolism
metB 114 Methionine Amino acid biosynthesis
cysK 106 Cysteine Amino acid biosynthesis
cydD 69 ABC superfamily (membrane) Transport/binding proteins
gltA 64 TCA cycle Energy metabolism, carbon
iciA 64 DNA replication, repair Macromolecule synthesis, modification
aroA 63 Chorismate Amino acid biosynthesis
purN 58 Purine ribonucleotide biosynthesis  Nucleotide biosynthesis
xylB 58 Carbon compounds Degradation of small molecules

dIndicates the gene containing the insertion.
bindicates the fold change derived from the ratio of the competitively selected library to the initial library.
°The complete list of genes analyzed is included in the supplemental data (http://arep.med.harvard.edu/).

Badarinarayana, et al. (2001) Nat Biotechnol
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Gene Deletions and FBA

Table 5. Comparison of genetic footprinting data with FBA
model predictions

Predictions Number of Negatively Not negatively
from model genes within selected? selected®
prediction class

Essential 143 80 63
Reduced growth rate 46 24 22
Nonessential 299 119 180

4The number of genes within each class that contain negatively selected insertions.
"The number of insertion containing genes within each class that were not neg-
atively selected. The numbers in the last two columns were used to compute
the y2 number and compute the P value. P value from ¥2 = 0.0039.

Badarinarayana, et al. (2001) Nat Biotechnol
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Suboptimal mutants

m Mutants will not behave
optimally

m Regulatory constraints can be
adjusted to optimize the system

subject to the physicochemical
constraints

®m Predictions of the initial behavior
of mutants
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Improved Growth Predictions

EBA of knockout O€dre, et al. (2002) PNAS
(optimal)

FBA of wild type
(optimal)

objective
function

MPA of knockout
(suboptimal)

feasible space

. feasible space
of knockout (I)J (I)

of wild type
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Improved Growth Predictions

Segre, et al. (2002) PNAS
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